Circles

Free Response Questions

Q: 1 Shown below is a circle O inscribed in a trapezium such that PQ || RS. The radius of the [1] circle is 6 cm.

(Note: The figure is not to scale.)

What is the height of the trapezium? Show your work and give valid reasons.

 $\frac{Q: 2}{\Delta QMP}$ Shown below is a circle with 3 tangents at points N, O and R. QN = PO = x units and [1] ΔQMP is an equilateral triangle.

(Note: The figure is not to scale.)

Express the length MN in terms of *x*. Show your work.

Q: 3 In the figure below, PQ and PR are tangents to the circle.

(Note: The figure is not to scale.)

Find the perimeter of ▲SQP. Show your work.

Q: 4 Shown below is a circle with centre A. CD, CB and FE are tangents to the circle. ∠DCF [2] = 60° and ∠EFC = 75°.

(Note: The figure is not to scale.)

Find the measure of $\angle DAE$. Show your work and give valid reasons.

Q: 5 Shown below is a circle with centre O. PQ is tangent to the circle at Q.

(Note: The figure is not to scale.)

What is the length of tangent PQ? Show your work and give valid reasons.

Q: 6 Shown below are two circles with centres A and B. The circle with centre A has a radius[3] of 5 cm. AC is a tangent to circle with centre B. FED is a straight line.

(Note: The figure is not to scale.)

What is the length of chord DE? Show your work and give valid reasons.

[2]

 $\frac{Q:7}{Q}$ In the figure below, PR and QR are tangents to a circle with centre O, at points P and [3] Q. Two semicircles are drawn on tangents PR and QR. Each semicircle has an area of π square units. Quadrant POQ has an area of 2π square units.

⁽Note: The figure is not to scale.)

Find the area of the shaded region. Show your work and give valid reasons.

Q: 8 Shown below is a circle with 3 tangents KQ, KP and LM.

(Note: The figure is not to scale.)

If PM:KL = 1:2, find the measure of \angle LMK. Show your steps.

Get More Learning Materials Here : 📕

[3]

Case Study

Answer the questions based on the given information.

The game of carrom is played on a square board with a pocket in each corner. They are played using small disks of wood or plastic known as carrom coins. A larger and heavier disk called a striker is used to push these coins across the board to the pockets. The positions of striker and a few coins at different instances in a game are shown in the figure:

- P, R and S denote different positions of the striker.
- Q, T and U denote different positions of the coins.
- O is the centre of the carrom board.

The points P, Q and R do not lie on a straight line. The line PQ touches the circular part of the carrom board only at Q.

<u>Q: 9</u> The striker at P is 18 cm from the centre and $\angle OPQ = 30^{\circ}$.	[2]
Find the distance between the striker at P and the coin at Q. Show your work and give valid reasons.	3
Q: 10 Can QR be a tangent to the circle at Q? Give a valid reason.	[1]
Q: 11 SU and ST are tangents to the circle at U and T respectively and $\angle UQT = 55^{\circ}$.	[2]
Find \angle UST. Show your work and give valid reasons.	

Get More Learning Materials Here :

Q.No	What to look for	Marks
1	Writes that the radius is perpendicular to the tangent at its point of contact, hence the diameter is the shortest distance between PQ and RS.	0.5
	Finds the height of the trapezium as $2 \times 6 = 12$ cm.	0.5
2	Identifies $PR = PO = x$, $QR = QN = x$ and finds the length of PQ as 2 x units.	0.5
	Identifies QM = PM = PQ = 2 x units and finds the length of MN as $2 x + x = 3 x$ units.	0.5
3	Finds the length of $PQ = PR = 5$ cm.	0.5
	Concludes that A SQP is an equilateral triangle and finds its perimeter as $3 \times 5 = 15$ cm.	0.5
4	Writes that angles on a straight line are supplementary and finds the measure of \angle EFB as 180° - 75° = 105°.	0.5
	Writes that a tangent to a circle is perpendicular to the radius through the point of contact and hence, $\angle AEF = \angle ABF = \angle ADC = 90^{\circ}$.	0.5
	Writes that sum of angles in quadrilateral ABFE is 360° and finds the measure of \angle EAB as 360° - 285° = 75°.	0.5
	Writes that sum of angles in quadrilateral ABCD is 360° and finds the measure of \angle DAE as 360° - 315° = 45°.	0.5
5	Finds the length of PO as $6 + 9 = 15$ cm.	0.5
	Writes that a tangent to a circle is perpendicular to the radius through the point of contact and hence $\angle PQO = 90^{\circ}$.	1
	Uses pythagoras theorem in A PQO to find the length of tangent PQ as $\sqrt{(15^2 - 9^2)} = 12$ cm.	0.5
6	Writes that the radius is perpendicular to the tangent at the point of contact and finds \angle FEC as 90° - 30° = 60°.	1

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
	Writes that alternate angles are equal and hence $\angle AED = \angle FEC = 60^{\circ}$.	0.5
	Identifies that AD = AE and hence $\angle AED = \angle ADE = 60^{\circ}$.	0.5
	Writes that sum of angles in a triangle is 180°, hence $\angle DAE = 60^{\circ}$.	0.5
	Concludes from the above steps that A ADE is equilateral and hence the length of chord DE is 5 cm.	0.5
7	Assumes the radius of the semicircles as r units and finds the diameter of the semicircles as:	0.5
	$\frac{\pi r_2}{2} = \pi$ => 2 r = 2 $\sqrt{2}$ units	
	Assumes the radius of the quadrant as <i>q</i> units and finds the radius of the quadrant as:	0.5
	$\frac{\pi q_e}{4} = 2\pi$ $\Rightarrow q = 2\sqrt{2} \text{ units}$	
	Writes that quadrilateral POQR is a square as all four sides measure $2\sqrt{2}$ units and all vertex angles measure 90°.	1
	Finds the area of the square as $2\sqrt{2} \times 2\sqrt{2} = 8$ square units.	0.5
	Finds the area of the shaded region as (8 - 2π) square units.	0.5
8	Assumes the lengths of PM as <i>x</i> units and KL as 2 <i>x</i> units. Writes the length of MN as <i>x</i> units.	0.5
	Assumes the length of $QL = LN$ as y units and writes the length of QK as (2 $x + y$) units.	1
	Writes the length of LM as MN + LN = ($x + y$) units.	0.5
	Writes the length of MK as $(2 x + y) - x = (x + y)$ units.	0.5

Get More Learning Materials Here : 📕

Q.No	What to look for	Marks
	Writes that since LM = MK, the measure of \angle LMK = 180 - (50 + 50) = 80°.	0.5
9	Finds that OQ is the radius of the circle and hence OQ is perpendicular to PQ.	0.5
	Writes that in ▲OPQ:	1
	$PQ = OPcos \ 30^\circ = 18 \times \frac{\sqrt{3}}{2}$	
	Simplifies the above expression and finds the distance between the striker at P and the coin at Q as $9\sqrt{3}$ cm.	0.5
10	Writes that only one tangent can be drawn from a point on the circle and since PQ and QR are two different straight lines and PQ is a tangent, QR cannot be a tangent to the circle at Q.	1
11	Finds \angle UOT as 110° and states that angles subtended by an arc at the centre of the circle is double the angle subtended by that arc anywhere on the circle.	1
	Finds that \angle UST = 180° - 110° = 70° as OU is perpendicular to SU, OT is perpendicular to ST and angle-sum property of a quadrilateral.	1

Get More Learning Materials Here : 📕

